

Medical Grade AC/DC Power Supply With PFC

85-264 Vrms 12/24/36/48 V 400 W 500 W Up to 91 %
Input Voltage Semi-Regulated Output Output Continuous Output Transient Full Load Efficiency

Product Features

- High efficiency (91% for 48 Vout Model at 400 W)
- Universal input voltage range
- Semi-regulated output for bus stability
- Parallel operation supported
- Integral fan cooling with speed control
- Active PFC; EN61000-3-2 compliant
- Low leakage; EN60601-1 compliant
- Low noise; EN55011 / EN55022 Class B compliant
- Medical EMI Compatibility: IEC 60601-1-2 ed 4.0 compliant

- Over-current, over-voltage, & over-temp protection
- DC Power Good / AC Power Good signals
- Remote enable input
- Fan status output / Fan enable input
- Small size: 3" x 5" x 1.45"(open frame)
- RoHS 6/6 compliant
- 5 V (250 mW) standby output

ACuQor 400 W Series Electrical Characteristics All specifications typical with $T_A = 25$ °C, unless otherwise specified. Specifications subject to change without notice.

All specifications typical		ise specified. Specifica
MAIN OUTPUT SPECIFI		
Output power (continuous) 85-132/170-264 Vrms	400 W
(5 s transient)	85-132/170-264 Vrms	500 W
	132-170 Vrms	See Figure 10
Nominal DC output	12 Vout	12.4 V
voltage (at 250W)	24 Vout	25 V
(Semi-regulated)	36 Vout	37.5 V
(Seriii regulatea)	48 Vout	50 V
Efficiency	12 Vout, 115 Vrms, 400 W	88% typ.
•		
(see figs. 1, 3, 5, 7)	48 Vout, 115 Vrms, 400 W	90% typ.
	12 Vout, 230 Vrms, 400 W	89% typ.
	48 Vout, 230 Vrms, 400 W	91% typ.
Hold-up time (to -20%)	12 Vout	16 ms @ 400 W
	24 / 36 / 48 Vout	20 ms @ 400 W
Maximum load capacitance	e 12 Vout	16,000 μF
	24 Vout	8,000 μF
	36 Vout	4,000 µF
	48 Vout	2,000 µF
Output ripple voltage	Switching frequency (20 MHz BW)	0.5% p-p
output rippie voltage	Twice line frequency (at 300W)	5.0% p-p
Turn-on delay	Twice line frequency (at 500W)	2 s max.
•	Jourt stone from EO 7EO/	
Transient response	Iout steps from 50-75%	3% typ / 6% max. dev.
	At 0.2 A/µs	100 ms recovery
Overvoltage protection	Cyclic restart	110-120%
Short circuit protection	Cyclic operation	115% rated Iout
Total regulation	Over line, load and temperature	±6.0%
Auxillary Output	Always on (See Note 1)	5 V @ 50 mA
Thermal protection	Automatic recovery	+125 °C (PCB Temp)
REMOTE_ENABLE	Input Low Voltage	0.45 V (max)
	Input High Voltage	4.15 V (min)
INPUT SPECIFICATION		
AC input voltage	Universal range	85-264 Vrms
Input frequency	oro.oa.rage	47-63 Hz
Input current	115 Vrms @ 400 W	4 Arms
Input current	230 Vrms @ 400 W	2 Arms
Danier factor	230 VIIIIS @ 400 W	
Power factor	264 \/ (sold stort)	>0.98
Input surge current	264 Vrms (cold start)	40 A max.
Internal input fuses	Both AC lines	6.3 A
GENERAL SPECIFICATI		
Fundamental ripple freq.	Input	500 kHz
	Output	250 kHz
Audible noise	Fan speed varies with temp.	39 dBA @ 1 m max.
Weight (EA)		343 g (12.1 oz)
(EC)		446 g (15.7 oz)
MTBF	MIL-217	343.6 kHours
11151	Demonstrated	TBD kHours
ISOLATION SPECIFICA		TDD KITOUTS
Isolation voltage	Input to output	4000 Vrms
1301dd011 voltage	Input to ground	1500 Vrms
	. •	
	Output to ground (BF & CF)	1500 Vrms
	Output to ground (CFD)	5000 Vpulse
Insulation resistance	Output to ground	10 MΩ min.
Leakage currents		See Note 2

ENVIRONMENTAL CHA	RACTERISTICS	
Thermal performance	Operating ambie	
	Non-operating ar	mbient -40 °C to +85 °C
Relative humidity	Non-condensing	5-95% RH
Altitude	Operating	10,000 ft max.
	Operating	30,000 ft max.
Random vibration	5-500 Hz	0.03 g2/Hz
Shock	Half-sine, 10 ms,	3 axes 20 g peak
EMC CHARACTERISTIC		
Conducted emissions	EN55011 and EN	55022, FCC part15 Level B
Line frequency harmonics	EN61000-3-2	Class A
Voltage fluctuations	EN61000-3-3	Clause 5b
ESD air	EN61000-4-2	Level 4, +/-15kV
See following details		Perf Criteria A, AC Input Connections
		Perf Criteria B, DC Output Connections
ESD contact	EN61000-4-2	Level 4, +/-8kV
		Perf Criteria A; HCP, VCP, Case
Radiated immunity	EN61000-4-3	Level 3, 10V/m
		IEC60601-1-2 Ed.4 Table 4
		28 V/m
		IEC60601-1-2 Ed.4 Table 9
		Perf Criteria A
Fast transients	EN61000-4-4	Level 3,
		100KHz rep, AC input leads
		IEC60601-1-2 Ed.4 Table 5
		Perf Criteria A
Line surge immunity	EN61000-4-5	Level 3
		Perf Criteria B
Conducted immunity	EN61000-4-6	Level 3
- 6		Perf Criteria A
Power freq. mag. field	EN61000-4-8	30 A/m
		IEC60601-1-2 Ed.4 Table 4
V 10 12 12 12	ENIC4000 4 44	Perf Criteria A
Voltage dip immunity	EN61000-4-11	0% Ut; 0.5 cycle 45° increments
See following details		,
		0% Ut; 1 cycle
		70% Ut; 0.5s
		IEC60601-1-2 Ed.4 Table 5
Valtaga intermuntian	ENC1000 4 11	Perf Criteria A, Load Dependent
Voltage interruptions	EN61000-4-11	0% Ut; 5s
		IEC60601-1-2 Ed.4 Table 5 Perf Criteria B
NOTES:		ren Criteria B

- 1. Derate 1 mA per °C above 50 °C ambient temperature.
- 2. Leakage currents see page 3.

EMC Immunity Testing Details

ESD EN61000-4-2

For ESD tests applied directly to the DC output, one of the methods called out in IEC 61000-4-2 section 7.1.3 must be used to bleed off charge between successive ESD events. For example, the cable with 2 x 470kOhm resistors used for this purpose during coupling plane tests can be duplicated and connected from DC output to protective earth (PEGND).

Discharges must not be applied directly to any circuits other than the case (for encased models), the AC input connections, and the DC output connections. For ESD protection in equipment, it is important to follow the ACuQor Installation Instructions provided with each unit in regards to clearance. Those instructions are repeated here for emphasis. CF and CFD models, in particular, may experience high DC output voltages with respect to protective earth (PEGND) due to their low capacitance/low-leakage design if ESD pulses are directly applied. Maintaining adequate clearance will prevent arcing from ACuQor DC output circuitry to other user circuits and chassis.

Voltage Dips EN61000-4-11

The following table details the DC output loading conditions and performance criteria for AC input voltage dip tests.

ACuOor 300/400/500W Performance

Test Condition	DC Load	Criteria
0% UT; 0.5 cycle at 0, 45, 90, 135, 180, 225, 270 and 315 degrees	0 to 400 W	Α
	> 400 W	В
0% UT; 1 cycle at 0 degrees	0 to 350 W	Α
	> 350 W	В
70% UT; 25/30 cycles (0.5s) at 0 degrees	0 to 450 W	Α
	> 450 W	В
0% UT; 250/300 cycles (5s) at 0 degrees	All loading	В

Note: 300W models limited to 400W transients

Leakage Currents

AC Leakage Current from Input to Earth	AC Line Connection	Normal Condition	Open Neutral Fault
ACuQor Typical at	240 V L-N, 1 phase	125 μΑ	250 μΑ
110% nominal input	208 V L-L, 120 V L-N, 1 of 3 phases	65 µA	130 μΑ
voltage 60 Hz	240 V L-N-L, 120 V L-N, split phase	65 µA	130 μΑ

AC Leakage Current from Output to Earth	Model	Normal Condition	Open Earth Fault	AC Backdrive Fault
ACuQor Typical at	AQ BF	2 μΑ	36 μΑ	125 μΑ
264 Vac 60 Hz input	AQ CF	2 μΑ	6 μΑ	18 µA

For convenience, the following tables show limits allowed by various standards:

AC Leakage Current from Input to Earth	Standard	Normal Condition	Open Neutral Fault
	IEC60601-1	500 μA	1000 μΑ
Maximum Allowed per Standard	NFPA 99 2005	300 µA	_
	IEC60950	3500 μA	_

AC Leakage Current from Output to Earth	Contact Type	Normal Condition	Open Earth Fault	AC Backdrive Fault
Maximum Allowed	BF	100 μΑ	500 μΑ	5000 μΑ
per IEC60601-1	CF	10 μΑ	50 μΑ	50 μΑ

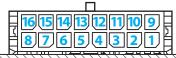
Table 1: Leakage Currents

Standard Testing Certifications

_			
SAFETY AGENCY CERTIFICATIONS			
UL 60601-1			
CAN/CSA C22.2 No. 601.1-M90			
EN 60601-1			
IEC 60601-1			
ANSI/AAMI ES60601-1			
CE Marked			
Meets NFPA 99 2005 300 µA earth leakage			

CONNECTOR DETAILS

Pin 11 REMOTE_ENABLE


Pin 12 VOUT(-)

Pin 13 VOUT(-)

Pin 14 VOUT(-)

Pin 15 VOUT(-)

Pin 16 VOUT(-)

OUTP	UT CONNECTOR PINC	OUT (top side)	
Pin 1	FAN_GOOD	Open collector with internal 5V pullup. See Figure A. Pulsed low on fan failure, 100ms, 50% duty. Short to VOUT(-) to disable fan.	
Pin 2	AC_POWER_GOOD	Open collector with internal 5V pullup. See Figure B. Pulled low on AC power dropout.	
Pin 3	DC_POWER_GOOD	Open collector with internal 5V pullup. See Figure B. Pulled low during startup ramp and within 5 °C of temperature shutdown threshold.	
Pin 4	5V_STANDBY	5 V $\ @ \ $ 50 mA available whenever AC power is applied.	
Pin 5	VOUT(+)	Positive Output Voltage.	
Pin 6	VOUT(+)	Positive Output Voltage.	
Pin 7	VOUT(+)	Positive Output Voltage.	
Pin 8	VOUT(+)	Positive Output Voltage.	
Pin 9	Reserved	Reserved for future use.	
Pin 10	Reserved	Reserved for future use.	

Logic input. See Figure C.

Negative Output Voltage. Negative Output Voltage.

Negative Output Voltage.

Negative Output Voltage.

Negative Output Voltage.

Pull high to enable main output.

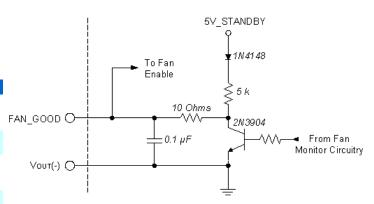


Figure A: Fan status output / Fan enable input interface circuitry.

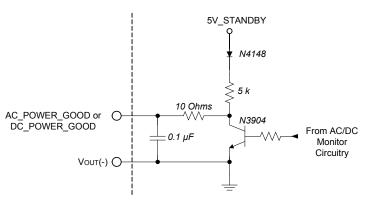
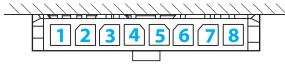



Figure B: Power good interface circuitry.

12 V	OUTPUT CONNECTOR	R PINOUT (bottom side)
Pin 1	VOUT(+)	Positive Output Voltage.
Pin 2	VOUT(+)	Positive Output Voltage.
Pin 3	VOUT(+)	Positive Output Voltage.
Pin 4	VOUT(+)	Positive Output Voltage.
Pin 5	VOUT(-)	Negative Output Voltage.
Pin 6	VOUT(-)	Negative Output Voltage.
Pin 7	VOUT(-)	Negative Output Voltage.
Pin 8	VOUT(-)	Negative Output Voltage

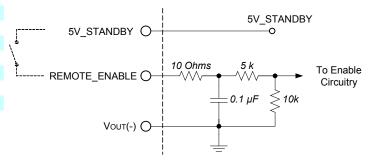


Figure C: Remote enable interface circuitry.

	'	3	
INDIV	IDUAL INPUT (CONNECTOR PINOUT	
Pin 1	Ground		
Pin 3	AC Neutral		
Pin 5	AC Line		

MATING CONNECTORS		
Connector	Туре	Contact
OUTPUT (16 pins)	Molex 430251600	Molex 430300008*
12V_OUTPUT (8 pins)	Molex 436450800	Molex 430300008*
INPUT	JST VHR-5N	JST SVH-41T-P1.1

* Each contact rated for a maximum of 5.5 A.

14.0

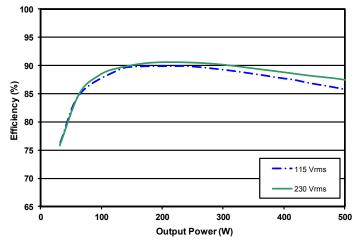
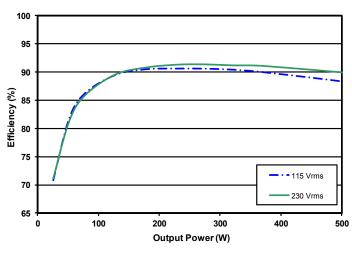



Figure 1: 12 V_{OUT} efficiency curves.

Figure 2: $12 V_{OUT}$ droop characteristic.

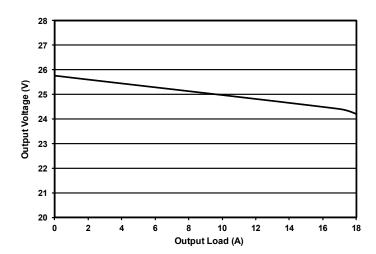
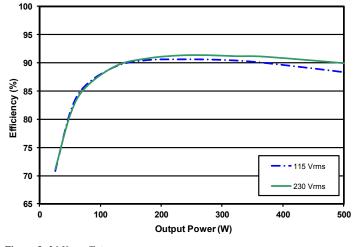



Figure 3: 24 V_{OUT} efficiency curves.

Figure 4: 24 $V_{\scriptscriptstyle OUT}$ droop characteristic.

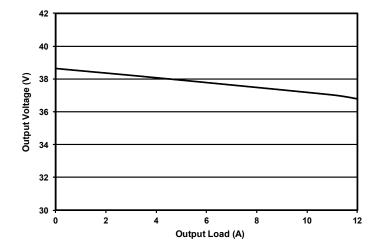


Figure 5: 36 $V_{\rm OUT}$ efficiency curves.

Product # AQ0400M4

Figure 6: 36 V_{OUT} droop characteristic.

EFFICIENCY, DERATING, AND VOUT DROOP CURVES

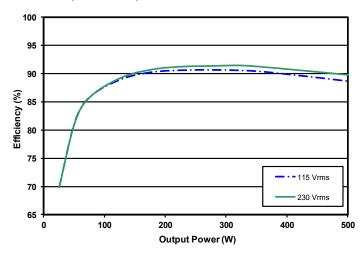


Figure 7: 48 $V_{\rm OUT}$ efficiency curves.

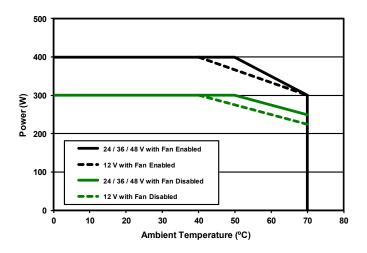


Figure 9: Continuous power derating curve in natural convection.

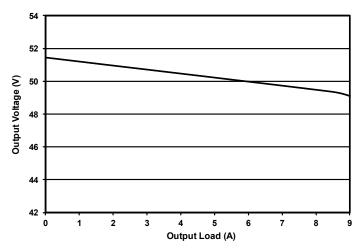
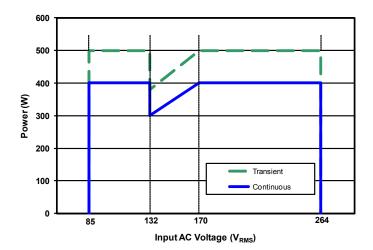
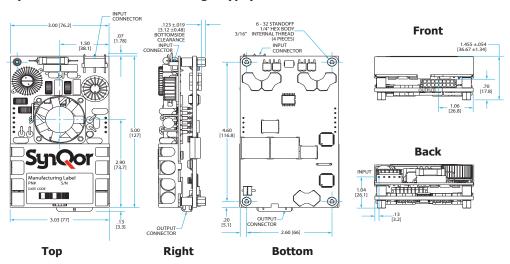
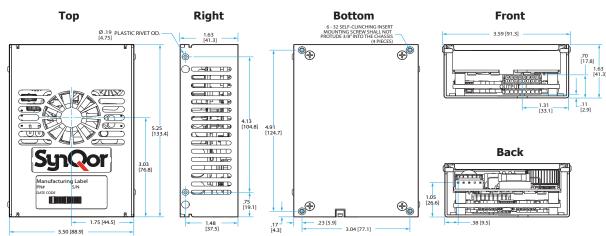


Figure 8: 48 $V_{\rm OUT}$ droop characteristic.


Figure 10: Rated output power vs Input AC Voltage.

MECHANICAL DRAWINGS

(1 Module Open Frame Version — E Package Type)

(1 Module Encased Version — E Package Type)

NOTES (applies to all mechanicals)

- 1) Recommended screw tightening torque of 6 in.lbs
- 2) Undimensioned components are shown for visual reference only
- 3) All dimensions in inches [mm]

Tolerances: x.xx in ± 0.02 x.xxx in ± 0.010

PARALLEL OPERATION - MULTIPLE UNITS

The following table summarizes the recommended wiring to operate multiple units in parallel. As a rule, units wired in parallel behave the same as single units. Any specification will remain unchanged that is expressed in units of voltage, time, frequency, or efficiency. Specifications expressed in terms of power, current, or capacitance, should be scaled by the number of units wired in parallel.

ACuQor units are individually calibrated at the factory, so that the output voltage vs. output current characteristic is always consistent (see Vout droop characteristic figures). As such, multiple units will share output current accurately. Full current is guaranteed from a bank of multiple units wired in parallel.

Output Connector Signal	Suggested Connection	Behavior with Multiple Units
REMOTE ENABLE	Wire in parallel	Inputs activated simultaneously
FAN GOOD	w.	Wired-OR outputs – can be pulled low by any unit during an abnormal condition.
AC POWER GOOD	"	"
DC POWER GOOD	"	п
VOUT(+), VOUT(-)	w	
12V STANDBY*	w	п
5V_STANDBY	Do not wire in parallel	Fully regulated characteristic does not support current sharing. If placed in
	·	parallel, only the output with the highest set-point will drive current.

*Note: Triple output models only.

INSTALLATION INSTRUCTIONS

General: ACuQor AC-DC power supplies are intended for use as components in medical and industrial equipment. ACuQor units must be properly installed within end use equipment before they can be safely applied as described in this document. The suitability of the ACuQor/equipment combination must be verified through end product investigation.

Mounting: Refer to the Mechanical Drawings section. ACuQor units are provided with threaded stainless-steel stand-offs or inserts for mounting. This mounting hardware is internally connected to the input connector protective-earth terminal for functional-earth EMC control. Any orientation (vertical, horizontal, etc.) may be used. Adequate air space should be provided over the fan intake (top) and exhaust (sides) to allow for exchange of cooling air. ACuQor is designed for a pollution degree 2 environment. The suitability of the enclosed ACuQor mechanical assemblies must be verified through end product investigation.

Open-frame models: A minimum of 5 mm electrical clearance should be allowed from the connector ends, the top and sides of open-frame models. A minimum 5 mil polyester Mylar film sheet attached to the mounting surface is required to allow some deflection and to meet defibrillation proof insulation requirements.

Encased models: A minimum of 5 mm electrical clearance should be allowed from the connector ends of encased models.

Input: Refer to the Connector Details section for input connector wiring. ACuQor products require a single phase AC power source of 100-240V 50/60Hz nominal. Refer to nameplate label for input current ratings. A protective-earth connection is also required. Minimum wire size of 18 AWG (0.8mm²) is recommended. Both sides of the AC line are internally fused (see table for specific models). These fuses are not user replaceable.

AQ0300 Littelfuse 6.3A 250V 21606.3XEP AQ0400 Littelfuse 6.3A 250V 21606.3XEP	MODEL	Input Fuses (in Both AC Lines)	
AQ0400 Littelfuse 6.3A 250V 21606.3XEP	AQ0300	Littelfuse 6.3A 250V 21606.3XEP	
	AQ0400	Littelfuse 6.3A 250V 21606.3XEP	
AQ0500 Littelfuse 10.0A 250V 216010XEP	AQ0500	Littelfuse 10.0A 250V 216010XEP	

OUTPUT: Refer to the Connector Details section for output connector wiring and signal I/O functionality. Refer to nameplate label for output current ratings. Main DC output (Vout+, Vout-) pins should use 20 AWG (0.5mm2) wire size. Individual main output pins should not be loaded to more than 5.5 A. For currents greater than 5.5 A, multiple main output pins/wires must be used in parallel. All signal I/O pins are referenced to Vout-.

EMC: **ACuQor** products have been tested **EMC** specifications listed in the Electrical Characteristics section. However, end use equipment must be tested verify **EMC** compliance. to

Hipot Testing: ACuQor products are rated for Hipot testing levels of 1500 Vac input to protective-earth, 1500 Vac output to protective-earth, and 4000 Vac input to output. When performing the 4000 Vac input to output test, the test voltage must be balanced evenly 2000 Vac input and output to protective-earth. Two oppositely phased test voltage sources or a single test voltage source with external balancing impedances (capacitors) may be used to prevent overstressing input or output to protective-earth insulation per IEC60601-1 2005 sub clause 8.8.1 and IEC60601-1 1990 sub clause 20.4 g.

Patient Contact: ACuQor models include versions designed for BF and CF patient contact application per IEC60601-1. These ACuQor models provide reinforced insulation at the DC output voltage level and basic insulation at the 240 Vac level from output to protective-earth. Note that equipment and wiring may add to system leakage currents so that the end product must be tested for compliance. Refer to the Electrical Characteristics section for typical ACuQor input and output leakage currents. In addition, ACuQor defibrillation rated models comply with the minimum output to protective-earth creepage/clearance requirement and defibrillator pulse test of IEC60601-1.

PART NUMBERING SYSTEM

The part numbering system for SynQor's ACuQor AC/DC power supplies follows the format shown in the table below. Not all combinations make valid part numbers, please contact SynQor for availability.

Family	Output Power	Grade	Range	Output Voltage	Package Type	Thermal Design	Options
AQ: ACuQor series of AC-DC semi-regulated output power supplies	0300: 300 W 0400: 400 W 0500: 500 W	M: (Medical)	4: 4th Generation EMC Universal (85-264 VRMS)	12: 12 V 1T: 12 V / 5 & 12 V STBY 24: 24 V 2T: 24 V / 5 & 12 V STBY 36: 36 V 3T: 36 V / 5 & 12 V STBY 48: 48 V 4T: 48 V / 5 & 12 V STBY	I F · (3"Y5")	A: Open frame C: Encased	Medical Grade: BF: BF isolation rating CF: CF isolation rating CFD: CF isolation rating defibrilator proof

Example: AQ0400M412ECBF

ACCESSORIES

SynQor offers a series of assemblies that can be ordered according to the table below. Mechanical drawings for these accessories are available for download in pdf format from the SynQor website.

Part Number	Description
AQ-CBL-INPUT1C	Input mating cable with pre-stripped wire ends (36" long).
AQ-CBL-OUT1C	Output mating cables with pre-stripped wire ends (18" long).
AQ-CBL-OUT1CD	Same as AQ-CBL -OUT1C with an additional 8-pins connector.
AQ-CBL-OUT2C	Output mating cable with connectors on both ends (18" long).
AQ-CBL-OUT2CD	Same as the AQ-CBL-OUT2C with an additional 8-pins connector.
AQ-INSUL1M	Single module bottom-side Mylar insulator for open frame mounting
AQ-EVAL-PRL3	Evaluation board for up to three paralleled modules.

APPLICATION NOTES

A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.

<u>Online Application Notes</u>

<u>Online Library of Technical White Papers</u>

SynQor website.

Contact SynQor for further information and to order:

Phone:978-849-0600Toll Free:888-567-9596Fax:978-849-0602

E-mail: power@synqor.com **Web**: www.synqor.com **Address**: 155 Swanson Road

Boxborough, MA 01719

USA

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

6,545,890 6,594,159 6,894,468 6,896,526 6,927,987 7,050,309 7,085,146 7,119,524 7,765,687 7,787,261 8,149,597 8,644,027 9,143,042

WARRANTY

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.