The PFCQor® Power Factor Correction module is an essential building block of an AC-DC power supply. Used in conjunction with a hold-up capacitor, SynQor's DC-DC converters and SynQor’s AC line filter, the PFCQor will draw a nearly perfect sinusoidal current (PF>0.99) from a single phase AC input. The module is supplied completely encased to provide protection from the harsh environments seen in many industrial and transportation environments.

Control Features
- PFC Enable
- Load Enable (also: Power Out Good signal)

Protection Features
- Input current limit and auto-recovery short circuit protection
- Auto-recovery input under/over-voltage protection
- Auto-recovery output over-voltage protection
- Auto-recovery thermal shutdown

Safety Features
- Input/Output to baseplate isolation 2150Vdc
- UL 60950-1-2007
- CAN/CSA-C22.2 No. 60950-1:2007
- EN60950-1/A12:2011
- CE Marked

Contents
- Technical Specification
- Standards & Qualification Testing
- Application Section
- Mechanical Diagrams
- Ordering Information
Typical Application of the PFC Module

Input: 85-264Vrms
Output: 390Vdc
Power: Up to 350W

Technical Specification

- **F1:** 5A / 250V Fuse
- **MOV1, TVS1:** Must prevent peak voltage from exceeding 575V during all transients.
- **F2:** Use fuse recommended in converter specification
- **C_{Hold-Up}:** 50 - 500 μF (Dependent on Power Level and Line Frequency)
- **C_{Y1-Y2}:** See "EMI Considerations" in application notes

Example Parts:

- **F1:** 250VAC, 5A; Littelfuse 0216005.MXEP
- **MOV1:** 300VAC, 60J; EPCOS S10K300E2
- **TVS1:** 400V, 3J; Use two VISHAY 1.5KE200CA devices connected in series
- **C_{Hold-Up}**: One 450V, 220μF; EPCOS B43508B5227M
- **C_{Y1}:** 3.3nF, 500VAC; Vishay VY1332M59Y5UQ6TV0
- **C_{Y2}:** 10nF, 300VAC; Vishay VY2103M63Y5US63V7

Figure A: Typical Application of the PFCQor module to create a multiple-output AC-DC Power Supply
PFCU390QPx04 Electrical Characteristics

Operating conditions of 115Vrms, 60Hz input, 350W output, 200uF bulk capacitance, and baseplate temperature = 25°C unless otherwise noted; full operating baseplate temperature range is -40 °C to +100 °C with appropriate power derating. Specifications subject to change without notice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes & Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSOLUTE MAXIMUM RATINGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage (L1 to L2/N)</td>
<td>575</td>
<td>2150</td>
<td></td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Isolation Voltage (Input / Output to Baseplate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40</td>
<td>100</td>
<td>25°C</td>
<td>°C</td>
<td>Baseplate temperature</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-45</td>
<td>125</td>
<td>25°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Voltage at LOAD ENA pins</td>
<td>-0.3</td>
<td>16</td>
<td></td>
<td>V</td>
<td>Relative to Vout- pin</td>
</tr>
<tr>
<td>Current drawn from AUX pin</td>
<td>0</td>
<td>10</td>
<td></td>
<td>mADC</td>
<td></td>
</tr>
<tr>
<td>Voltage at PFC enable pin</td>
<td>-2</td>
<td>575</td>
<td></td>
<td>V</td>
<td>Relative to Vout- pin</td>
</tr>
<tr>
<td>INPUT CHARACTERISTICS (L1 to L2/N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Input Voltage Range</td>
<td>85</td>
<td>264</td>
<td>250V</td>
<td>Vrms</td>
<td></td>
</tr>
<tr>
<td>AC Input 100ms Transient</td>
<td>40</td>
<td>290</td>
<td>250V</td>
<td>Vrms</td>
<td>Available output power reduced when <90 Vrms</td>
</tr>
<tr>
<td>Input Under-Voltage Lockout</td>
<td>47</td>
<td>63</td>
<td>50/60 Hz</td>
<td>Hz</td>
<td>50/60Hz range</td>
</tr>
<tr>
<td>Operating Input Frequency</td>
<td>360</td>
<td>800</td>
<td>400Hz</td>
<td>Hz</td>
<td>400Hz range</td>
</tr>
<tr>
<td>Power Factor of AC Input Current</td>
<td>0.99</td>
<td>0.97</td>
<td>50/60Hz, min 200W output</td>
<td>400Hz, min 200W output</td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion of AC Input Current</td>
<td>3</td>
<td>%</td>
<td></td>
<td></td>
<td>When used with SynQor AC line filter</td>
</tr>
<tr>
<td>50/60Hz</td>
<td>10</td>
<td>10</td>
<td>20Apk</td>
<td>Apk</td>
<td></td>
</tr>
<tr>
<td>400Hz</td>
<td>50</td>
<td>80</td>
<td>20Apk</td>
<td>Apk</td>
<td></td>
</tr>
<tr>
<td>Enabled AC Input Current (no load)</td>
<td>30</td>
<td>50</td>
<td>20Apk</td>
<td>mArms</td>
<td></td>
</tr>
<tr>
<td>Maximum Input Power</td>
<td>385</td>
<td>385</td>
<td>385</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Maximum Input Current</td>
<td>4.8</td>
<td>50</td>
<td>85 VAC</td>
<td>Arms</td>
<td></td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Set Point</td>
<td>385</td>
<td>390</td>
<td>395</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vin <240Vrms</td>
</tr>
<tr>
<td>Over Line</td>
<td>±0.3</td>
<td>±2</td>
<td>±1.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Over Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Output Voltage Range</td>
<td>380</td>
<td>390</td>
<td>395</td>
<td>V</td>
<td>60Hz, see Note 1</td>
</tr>
<tr>
<td>Output Voltage Ripple and Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With 200uF hold-up capacitor</td>
</tr>
<tr>
<td>Peak-to-Peak</td>
<td>10</td>
<td>4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Output Current Range</td>
<td>0</td>
<td>0.9</td>
<td>400</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Output Over-Voltage Shutdown Threshold</td>
<td>440</td>
<td>460</td>
<td>500</td>
<td>µF</td>
<td>See Note 2</td>
</tr>
<tr>
<td>Output (Hold-up) Capacitance</td>
<td>50</td>
<td>500</td>
<td>500</td>
<td>µF</td>
<td>See "EMI Considerations" in application notes</td>
</tr>
<tr>
<td>Output Common-Mode Capacitance</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Load at 115Vrms</td>
<td>94</td>
<td></td>
<td></td>
<td>%</td>
<td>See Figure 1 for efficiency curve</td>
</tr>
<tr>
<td>100% Load at 230Vrms</td>
<td>96</td>
<td></td>
<td></td>
<td>%</td>
<td>See Figure 1 for efficiency curve</td>
</tr>
</tbody>
</table>

Note 1: 200 µF electrolytic hold-up capacitor having a typical ESR of 0.5Ω. Ripple amplitude dependent on capacitance and ESR of hold-up capacitor.

Note 2: The PFCQor is able to operate with a minimum of 50uF of hold-up capacitance, but SynQor recommends at least 330uF if the power system will be required to conform to lightning surge standards. This is because the PFCQor relies on the hold-up capacitor to absorb the energy from a lightning surge.
PFCU390QPx04 Electrical Characteristics (continued)

Operating conditions of 115Vrms, 60Hz input, 350W output, 200μF bulk capacitance, and baseplate temperature = 25°C unless otherwise noted; full operating baseplate temperature range is -40 °C to +100 °C with appropriate power derating. Specifications subject to change without notice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes & Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up Inhibit Time</td>
<td>10</td>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>2</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Overshoot</td>
<td>0</td>
<td>2</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISOLATION CHARACTERISTICS (Input/output to baseplate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>2150</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Resistance</td>
<td>100</td>
<td>MΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Capacitance</td>
<td>100</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE LIMITS FOR POWER DERATING CURVES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductor Junction Temperature</td>
<td>125</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Temperature</td>
<td>125</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer Temperature</td>
<td>125</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Baseplate Temperature, Tb</td>
<td>100</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEATURE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Precharge</td>
<td>50</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short-Circuit Withstand</td>
<td>indefinite</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Running Switching Frequency</td>
<td>250</td>
<td>kHz</td>
<td></td>
<td>Each of 2 interleaved phases</td>
<td></td>
</tr>
<tr>
<td>PFC Enable (PFC ENA)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-State Voltage</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-State Voltage</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Pull-Up Voltage</td>
<td>5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Pull-Up Resistance</td>
<td>10</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Enable</td>
<td>20</td>
<td>Ω</td>
<td>Open collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage for Load Enable (Good) State</td>
<td>360</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rising / Startup</td>
<td>200</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failing / Shutdown</td>
<td>130</td>
<td>°C</td>
<td>At internal PCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Trip Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary Bias Supply</td>
<td>7</td>
<td>12</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range (≤3 mA Load)</td>
<td>10</td>
<td>mA DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Source Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance</td>
<td>1</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELIABILITY CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated MTBF (Telcordia) TR-NWT-000332</td>
<td>1.68</td>
<td></td>
<td>10^6 Hrs.</td>
<td>Tb = 70°C</td>
<td></td>
</tr>
<tr>
<td>Calculated MTBF (MIL-217) MIL-HDBK-217F</td>
<td>1.26</td>
<td></td>
<td>10^6 Hrs.</td>
<td>Tb = 70°C</td>
<td></td>
</tr>
<tr>
<td>Field Demonstrated MTBF</td>
<td></td>
<td></td>
<td></td>
<td>See our website for details</td>
<td></td>
</tr>
</tbody>
</table>
Input: 85-264Vrms
Output: 390Vdc
Power: Up to 350W

Technical Specification

Figure 1: Efficiency at nominal output voltage vs. load power for 90Vrms, 115Vrms and 230Vrms (60Hz) input voltage at $T_b = 25^\circ C$.

Figure 2: Power dissipation at nominal output voltage vs. load power for 90Vrms, 115Vrms and 230Vrms (60Hz) input voltage at $T_b = 25^\circ C$.

Figure 3: Typical Input Voltage and Current waveforms at full rated power (115Vrms, 60Hz) Top: V_{in} (100V/div), Bottom: I_{in} (5A/div), Timebase: (5ms/div).

Figure 4: Typical Input Voltage and Current waveforms at full rated power (115Vrms, 400Hz). Top: V_{in} (100V/div), Bottom: I_{in} (5A/div), Timebase: (1ms/div).

Figure 5: Output power vs. leading power factor, PFC module only

Figure 6: DC output voltage range vs. input voltage
Technical Specification

Input: 85-264Vrms
Output: 390Vdc
Power: Up to 350W

Figure 7: Output voltage ripple with 200µF Hold-up capacitor at full rated power (115VAC, 60Hz) Vout (10V/div), Timebase: (5ms/div)

Figure 8: Output voltage startup waveform with 200µF hold-up capacitor, no load (115VAC, 60Hz) Vout (100V/div), Timebase: (500ms/div)

Figure 9: Output power vs. baseplate temperature derating curve

Figure 10: Output power vs. input voltage, output turn-on threshold is 85Vrms
Standards Compliance, Qualification Testing & EMC Characteristic

#### Parameter	Notes & Conditions
STANDARDS COMPLIANCE	
UL 60950-1:2007/A2:2014 | Basic Insulation to Baseplate
EN 60950-1:2006/A2:2013 | |
CE Marked | |
Note: An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.

#### Parameter	# Units	Test Conditions
QUALIFICATION TESTING		
Life Test | 32 | 95% rated Vin and load, units at derating point, 1000 hours
Vibration | 5 | 10-55 Hz sweep, 0.060” total excursion, 1 min./sweep, 120 sweeps for 3 axis
Mechanical Shock | 5 | 100g minimum, 2 drops in x,y and z axis
Temperature Cycling | 10 | -40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles
Power/Thermal Cycling | 5 | Toperating = min to max, Vin = min to max, full load, 100 cycles
Design Marginality | 5 | Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load
Humidity | 5 | 85 °C, 95% RH, 1000 hours, continuous Vin applied except 5 min/day

EMC CHARACTERISTICS (With SynQor AC Line Filter)
| | |
Conducted emissions | EN55011 and EN55022, FCC PART 15
Line frequency harmonics | EN61000-3-2
Voltage fluctuations | EN61000-3-3
ESD air | EN61000-4-2
Radiated immunity | EN61000-4-3
Fast transients | EN61000-4-4
Line surge immunity | EN61000-4-5
Conducted immunity | EN61000-4-6
Power freq. mag. field | EN61000-4-8
Voltage dip immunity | EN61000-4-11
Basic Operation & Features

The PFCQor power factor correction module is an essential building block of an overall high power AC-DC power supply. As shown in Fig. A, a typical power supply would be comprised of a SynQor AC Line Filter, a SynQor PFCQor module, an energy storage hold-up capacitor and one or more SynQor DC-DC converters, depending on how many output voltages are required. Fuses are needed in various places to meet safety requirements.

The primary purpose of the PFCQor is to shape the input current that is drawn from a single-phase sinusoidal AC source into a nearly perfect sinusoidal waveform so that the AC-DC power supply will present a very high power factor load ($PF > 0.99$) to this source. In doing this wave-shaping, the PFCQor ensures that the harmonic components of the AC current waveform are below the levels called for in MIL-STD-1399.

The PFCQor accomplishes its wave-shaping task by first rectifying the filtered AC source voltage, and then processing the input power through a non-isolated, high-efficiency, high-frequency “boost converter” that both gives the input AC current its sinusoidal shape and provides a regulated DC voltage across the hold-up capacitor.

The hold-up capacitor handles the cyclic imbalance between the flow of energy drawn from the AC source and the flow of energy delivered to the DC-DC converters. This energy imbalance has a cyclic frequency twice that of the AC source voltage (e.g. 120Hz for a 60Hz input). This relatively low frequency makes the hold-up capacitor relatively large. Another purpose of the hold-up capacitor is to be a source of energy so that the DC-DC converters can continue to deliver load power during a temporary brownout or dropout of the AC source. A typical power supply will have sufficient hold-up capacitor to give a “hold-up time” in the 20ms range, but longer times can be achieved with yet more hold-up capacitance.

Besides shaping the AC current waveform, the PFCQor performs several other important functions. At start-up it controls the level of inrush current drawn from the AC source to charge the hold-up capacitor. It limits the DC current that can be drawn from its output and it will shut-down if a short circuit appears across the output. It will also shut-down if the AC input voltage is out of its range (either too high or too low) for too long, or if the temperature of the module is too high.

In addition, the PFCQor has input and output control signals that include PFC_ENABLE and LOAD_ENABLE, (which doubles as a POWER_OUT_GOOD signal). Both signals are described in more detail below. There is also an auxiliary bias supply that can be used to power a low power control circuit at the output of the PFCQor.

StartUp Sequence

When the AC source voltage is first applied, regardless of whether the PFCQor is enabled or disabled through its PFC_ENABLE pin, the PFCQor will pre-charge the output hold-up capacitor with a current limited to approximately 50mA. This pre-charging continues until the output voltage is within approximately 10V of the peak voltage of the AC source. If, at this time, the PFC_ENABLE input is logically high, and the PFCQor is therefore disabled, the PFCQor will remain in this pre-charged state indefinitely.

NOTE: During both this pre-charging time and for whatever time afterwards that the PFCQor remains disabled it is essential that all the load converters connected to the output of the PFCQor be disabled so that the total load current seen by the PFCQor is only a small fraction of the 50mA charging current. To help facilitate this requirement, the PFCQor’s LOAD_ENABLE output can be used to disable the load converters.

When the PFC_ENABLE input pin is pulled low, and after the pre-charging is completed if it is not already, the boost converter within the PFCQor will start operating and the PFCQor’s output voltage will be increased to its nominal regulated value.

After this regulated voltage level is achieved, the PFCQor will provide a logical low signal on its LOAD_ENABLE output pin. This signal should be used to enable the load converters so that they can begin to draw power from the PFCQor.

If the PFC_ENABLE input is de-asserted (pulled high or allowed to float), the boost converter in the PFCQor will shut down and the LOAD_ENABLE output pin will return to a logic high. This will then disable the load converters.

NOTE: The voltage across the hold-up capacitor will remain in a charged state after the PFCQor is disabled as long as the AC source voltage is present.
Brownout/Dropout Sequence

If the AC source voltage is present but it is below its continuous minimum input voltage limit, the PFCQor will still draw whatever power it can (within its current limits) from the AC source. This power may not be enough for the total load power, in which case the hold-up capacitor will provide the balance of the power. The voltage across the hold-up capacitor will therefore drop as it discharges.

If the AC source voltage drops below its specified transient minimum input voltage limit, the PFCQor’s boost converter will shut down and no longer deliver power to the output. Under this condition, all of the load power will be drawn from the hold-up capacitor.

If and when the voltage across the hold-up capacitor drops below its specified minimum limit, the LOAD_ENABLE output will be de-asserted to a logic high. Besides disabling the load converters, this condition will cause the PFCQor to return to the beginning of the startup sequence described above.

NOTE: Regardless of what happens to the PFCQor’s output voltage under a brownout or dropout condition, if the AC source voltage drops below its rated under-voltage value for 1 second or more, the PFCQor will shut down.

If, however, the voltage across the hold-up capacitor does not drop below its specified minimum limit before the AC source voltage returns to within its continuous operating range (and it hasn’t been absent for more than 1 second), the PFCQor will automatically re-establish its power flow. The hold-up capacitor will be recharged immediately to the peak of the AC source voltage (if it has fallen below this value) and to its nominal regulated voltage level within a few cycles of the AC source waveform.

NOTE: During the first phase where the hold-up capacitor is recharged (if this phase exists) there will be an inrush current drawn from the AC source that depends on the details of how quickly the AC source voltage returns to its normal operating condition.

Control Features

Auxiliary Power Supply (AUX) (Pin 5):

The circuit shown below is an effective model for the AUX bias power supply:

The purpose of the AUX power supply is to provide a low level of power to control circuitry at the output of the PFCQor, such as the circuits shown earlier in this section.

The AUX power supply is present and regulated whenever the PFCQor’s output voltage is greater than approximately 75V. The AUX bias power supply is unspecified when PFCQor’s output voltage is less than about 75V (it may, for instance, come and go as the output voltage rises on its way to 75V).

PFC_ENABLE (Pin 2):

The PFCQor uses the following circuit for this input logic signal:

- If this input is floating or tied high the PFCQor’s boost converter is disabled and the LOAD_ENABLE output signal is de-asserted high.
- If this input is pulled low the PFCQor’s boost is enabled after the pre-charger has charged the voltage across the hold-up capacitor to within approximately 10 volts of the peak of the AC source voltage.
LOAD_ENABLE
(also: POWER OUT GOOD signal) (Pin 6):

The PFCQor uses the following circuit for this output logic signal:

- When the LOAD_ENABLE pin is internally pulled LOW the load converters are permitted to draw power from the PFCQor’s output.
- When the LOAD_ENABLE floats all load converters should disabled.
- The LOAD_ENABLE can be tied directly to the ON/OFF control pins of SynQor’s DC-DC converters as shown in Figure A.
- For loads that are not SynQor DC-DC converters and that do not otherwise have a way to be enabled/disabled, an external power MOSFET can be used to connect and disconnect these loads from the PFCQor’s output based on the status of the LOAD_ENABLE signal, as shown below.

• For high-side or remotely switched loads, an optoisolator can be employed as shown below.

Protection Features

Input Over- and Under-Voltage:

If the AC source voltage exceeds the maximum peak voltage rating defined in the electrical specifications, the PFCQor will shut down. However, under this condition the PFCQor’s pre-charge circuit will continue to deliver 50mA of current to the output whenever the AC source voltage is higher than the DC output voltage. Care must be taken to ensure this condition does not allow the output voltage to rise high enough to damage the PFCQor or the load converters.

If a brownout or dropout of the AC source voltage occurs, and if it lasts long enough for the PFCQor’s output voltage to drop below its specified minimum limit, the PFCQor will shut down. Furthermore, regardless of what happens to the PFCQor’s output voltage, if the AC source voltage drops below its rated under-voltage value for 1 second or more, the PFCQor will shut down.

After any shutdown, the PFCQor will automatically return to the beginning of the startup sequence described above.

Output Over-Voltage:

If the output voltage exceeds its specified maximum limit, the MPFC will remain active, but will stop delivering power through its main boost stage until the output voltage falls below the over-voltage threshold.

Under this condition, the PFCQor’s pre-charge circuit will continue to deliver 50mA of current to the output whenever the AC source voltage is higher than the DC output voltage. Care must be taken to ensure this condition does not allow the output voltage to rise high enough to damage the PFCQor or the load converters.
Output Current Limit and Short-Circuit Shutdown:

If the PFCQor’s output is overloaded such that its output current limit becomes activated, the output voltage will fall as the excess load current discharges the hold-up capacitor. The PFCQor will continue to deliver power into this overload condition for 100 ms, after which the unit will shut down and automatically return to the beginning of the startup sequence described above. If at any point the output voltage falls below the peak of the AC source voltage, the PFCQor will immediately shut down and return to the startup sequence.

Over Temperature:

If the internal temperature of the PFCQor reaches 130°C, the PFCQor will turn off its boost converter. The LOAD_ENABLE output will simultaneously be de-asserted high. When the internal temperature falls below 110°C, the PFCQor will return to the beginning of the startup sequence described above.

Energy Storage Hold-Up Capacitor

The hold-up capacitor performs two functions:

- It handles the cyclic imbalance between the flow of energy drawn from the AC source and the flow of energy delivered to the DC-DC converters. In doing so, the voltage across the hold-up capacitor has a ripple at a frequency twice that of the AC source voltage (e.g. 120Hz for a 60Hz input). The larger the hold-up capacitor, or the higher the frequency of the AC source, the smaller this ripple will be.

- It provides a source of energy so that the DC-DC converters can continue to deliver load power during a temporary brownout or dropout of the AC source. The larger the hold-up capacitor the longer it can provide this energy. Often it will be made large enough to allow the load to be gracefully shutdown after the AC source has been outside of its normal range for a set amount of time. A typical “hold-up time” would be in the 20 ms range for a 50/60 Hz system.

The total energy stored in a hold-up capacitor having capacitance C at any given voltage V is:

\[E = \frac{1}{2}CV^2 \]

The amount of energy, ∆E, which can be drawn from this capacitor depends on the capacitor’s starting voltage, \(V_s \) and its final voltage, \(V_f \), where \(V_s \) is the PFCQor’s nominal regulated output voltage and \(V_f \) is the PFCQor’s minimum output voltage limit. This energy equals the amount of power, \(P \), which the DC-DC converters draw from the hold-up capacitor times the length of time, \(\Delta t \), which it takes for the hold-up capacitor’s voltage to drop from \(V_s \) to \(V_f \). This energy can be equated to the hold-up capacitance according to the following formula:

\[\Delta E = P\Delta t = \frac{1}{2}C(V_s^2 - V_f^2) \]

This formula can be rearranged to find the minimum required value for C to provide the hold-up time desired for a given power level (note: this power level \(P \) is not the load power, but rather the load power divided by efficiency of the DC-DC converters):

\[C_{min} = \frac{2P\Delta t}{(V_s^2 - V_f^2)} \]

For example, if we assume \(P = 350W \), \(\Delta t = 20ms \), \(V_s = 390V \) and \(V_f = 200V \), then we would want a hold-up capacitance of at least 125μF.

NOTE: The PFCQor is able to operate with a minimum of 50μF of hold-up capacitance, but SynQor recommends at least 330μF if the power system will be required to conform to lightning surge standards. This is because the PFCQor relies on the hold-up capacitor to absorb most of the energy from a lightning surge.

NOTE: Even though the PFCQor limits the inrush current drawn from the AC source during its startup sequence, it will not necessarily limit this current at the end of a temporary brownout or dropout of the AC source when the hold-up capacitor’s voltage has not dropped below its minimum output voltage limit. In such a condition the PFCQor will not reinitiate a startup sequence and it will therefore not limit the current flowing through it. If the peak of the AC source voltage is greater than the hold-up capacitor’s voltage at the end of the brownout/dropout period, there will be a large inrush current for one half-cycle as the hold-up capacitor’s voltage is charged up to the peak of the AC source voltage. The larger the hold-up capacitor, the larger this inrush current will be. To limit inrush current during this event, limit the charging current of additional hold-up capacitance to a resistor and diode as shown below.

If it is desired to have a hold-up time longer than can be achieved with the maximum specified hold-up capacitance, then the circuit shown below can be used.
In this circuit the total hold-up capacitance is \((C_1 + C_2)\), and it can be made as large as desired as long as \(C_1\) does not exceed the maximum capacitance specified in the Technical Specifications table. The resistor, \(R_c\), in series with \(C_2\) is present to limit the current that will charge this capacitor after a temporary brownout/dropout event. Its resistance should be large enough to limit the charging current to a fraction of the PFCQor’s rated output current. The diode in parallel with the resistor permits the load converters to draw whatever energy they need from \(C_2\) without being hindered by the resistor.

Output Ripple Considerations:

The hold-up capacitor must have a ripple current rating high enough to withstand the ripple current generated on the output of the PFCQor. Ripple current amplitude is dependent only upon the total PFCQor output power, \(P_{DC}\), and the operating output voltage \(V_O\). It can be calculated using the following formula:

\[
I_{crms} = \frac{P_{DC}}{\sqrt{2}} = \frac{P_{DC}}{551}
\]

The AC line frequency, \(f_{ac}\), bulk capacitance, \(C\), operating output voltage, and output power will determine the amplitude of the voltage ripple present on the output of the PFCQor. It can be calculated with:

\[
V_{pk-pk} = \frac{P_{DC}}{2\pi \cdot f_{ac} \cdot C \cdot V_O}
\]

At 60 Hz: \(V_{pk-pk} = \frac{P_{DC}}{1.47 \cdot 10^5 \cdot C}\)

For example, to calculate voltage and current ripple for a PFCQor with a 350W output, 250µF hold-up capacitor, and a 60Hz fundamental AC line frequency:

\[
I_{crms} = \frac{350W}{551} = 0.6A_{rms}
\]

\[
V_{pk-pk} = \frac{350W}{2\pi \cdot 60Hz \cdot 250 \cdot 10^{-6} \cdot 390V} = 9.6V_{pk-pk}
\]

In this case, the hold-up capacitor would require a minimum ripple current rating of 0.6A\(_{rms}\), and the output voltage would have a pk-pk ripple voltage of 9.6V.

Safety Notes

The output of the PFCQor is not isolated from the AC source, and it is therefore a hazardous voltage. Care must be taken to avoid contact with this voltage, as well as with the AC source voltage.

The PFCQor must have a fuse in series with its AC source. The rating for this fuse is given in the Technical Specification table.

Thermal Consideration

The maximum operating base-plate temperature, \(T_b\), is 100°C. Refer to the thermal derating curves to see the allowable power output for a given baseplate temperature and input voltage. A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is only necessary to determine the thermal resistance, \(R_{THBA}\), of the chosen heatsink between the base-plate and the ambient air for a given airflow rate. The following formula can then be used to determine the maximum power the converter can dissipate for a given thermal condition:

\[
P_{diss}^{max} = \frac{T_B - T_A}{R_{THBA}}
\]

This value of power dissipation can then be used in conjunction with the data shown in the figures to determine...
the maximum load power that the converter can deliver in the given thermal condition.

AC Line Filter

An AC line filter is needed to attenuate the differential- and common-mode voltage and current ripples created by the PFCQor, the DC-DC converters, and the load, such that the system will comply with EMI requirements. The filter also provides protection for the PFCQor from high frequency transients in the AC source voltage. SynQor has a family of AC line filters that will provide these functions. It is recommended that a metal-oxide varistor (MOV) be placed from line-to-line on the input of the filter, and a TVS diode be placed from line-to-line on the output of the filter in order to keep the PFCQor input voltage from exceeding 450V during all transients, except when the PFC is disabled, when the input can tolerate 575V transients for up to 100ms. See Figure A for example parts. If a non-SynQor AC line filter is used, the use of an MOV on the input and a TVS diode on the output of the filter is still recommended.

EMI Considerations

To meet various conducted line emission standards, additional Y-capacitors may be needed to attenuate common-mode noise. SynQor recommends that safety-rated ceramic capacitors be placed across any isolated DC-DC converters on the output of the PFC from Vin- to Vout- and Vout- to ground. However, the total capacitance from the PFC output leads to earth ground should not be more than 20nF if one of the PFC input leads is connected to earth ground. See “Typical Application of the PFC Module” (Figure A) for a diagram and suggested parts.
Input: 85-264Vrms
Output: 390Vdc
Power: Up to 350W

NOTES
1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm). Screw should not exceed 0.100" (2.54mm) depth below the surface of the baseplate.
2) Baseplate flatness tolerance is 0.004" (.10 mm) TIR for surface.
3) Pins 1-3, 5-6 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
4) Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
5) All Pins: Material - Copper Alloy; Finish - Matte Tin over Nickel plate
6) Undimensioned components are shown for visual reference only.
7) Weight: 3.07 oz. (87 g)
8) All dimensions in inches (mm).

Tolerances:
- xx +/-0.02 in. (x.x +/-0.5mm)
- xxx +/-0.010 in. (x.xx +/-0.25mm)

9) Workmanship: Meets or exceeds IPC-A-610C Class II

PIN DESIGNATIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>AC Line 1</td>
</tr>
<tr>
<td>2</td>
<td>PFC ENA</td>
<td>Negative Logic PFC Enable</td>
</tr>
<tr>
<td>3</td>
<td>L2/N</td>
<td>AC Line 2 / Neutral</td>
</tr>
<tr>
<td>4</td>
<td>-VOUT</td>
<td>Negative Output Voltage</td>
</tr>
<tr>
<td>5</td>
<td>AUX</td>
<td>Auxiliary Bias power supply</td>
</tr>
<tr>
<td>6</td>
<td>LOAD ENA</td>
<td>Negative Logic load enable and power out good signal</td>
</tr>
<tr>
<td>8</td>
<td>+VOUT</td>
<td>Positive Output voltage</td>
</tr>
</tbody>
</table>
NOTES

1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
2) Baseplate flatness tolerance is 0.010" (.2mm) TIR for surface.
3) Pins 1-3, 5-6 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
4) Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
5) All Pins: Material - Copper Alloy; Finish - Matte Tin over Nickel plate
6) Undimensioned components are shown for visual reference only.
7) Weight: 3.32 oz. (94 g)
8) All dimensions in inches (mm).

Tolerances:
- x.xx +/-0.02 in. (x.x +/-0.5mm)
- x.xxx +/-0.010 in. (x.xx +/-0.25mm)

unless otherwise noted.
9) Workmanship: Meets or exceeds IPC-A-610C Class II

PIN DESIGNATIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>AC Line 1</td>
</tr>
<tr>
<td>2</td>
<td>PFC ENA</td>
<td>Negative Logic PFC Enable</td>
</tr>
<tr>
<td>3</td>
<td>L2/N</td>
<td>AC Line 2 / Neutral</td>
</tr>
<tr>
<td>4</td>
<td>-VOUT</td>
<td>Negative Output Voltage</td>
</tr>
<tr>
<td>5</td>
<td>AUX</td>
<td>Auxiliary Bias power supply</td>
</tr>
<tr>
<td>6</td>
<td>LOAD ENA</td>
<td>Negative Logic load enable and power output good signal</td>
</tr>
<tr>
<td>8</td>
<td>+VOUT</td>
<td>Positive Output voltage</td>
</tr>
</tbody>
</table>
PART NUMBERING SYSTEM

The part numbering system for SynQor's dc-dc converters follows the format shown in the example below.

```
PFC U 390 Q P C 04 S R S - G
```

- **PFC:** Product Family
- **U:** 85-264 Vrms
- **390:** 390Vdc
- **Q:** Quarter-brick
- **P:** Peta
- **C:** Encased
- **V:** Encased with Flanged Baseplate
- **04:** 350W
- **S:** Single-Phase
- **R:** 0.180"
- **G:** 6/6 RoHS

The first 12 characters comprise the base part number and the last 3 characters indicate available options. The "-G" suffix indicates 6/6 RoHS compliance.

The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional characters for options.

ORDERING INFORMATION

Not all combinations make valid part numbers, please contact SynQor for availability.

Application Notes

A variety of application notes and technical white papers can be downloaded in PDF format from our website.

RoHS Compliance: The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor's RoHS addendum available at our RoHS Compliance / Lead Free Initiative web page or e-mail us at rohs@synqor.com.